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Problem Area & Contribution

Problem

Key clinical feature of
the Alzheimer’s
disease: Impairment
in daily function,
reflected on the
difficulty to perform
complex tasks, such
as the

(IADLS) [1]

making phone calls
shopping
preparing food
housekeeping
laundry

Current assessment
methods involve
questionnaires and
clinical rating scales

Cannot often provide objective and
fine-grained information

Pervasive and [oT
technologies promise
to overcome such
limitations
Using sensor networks and
intelligent analysis to capture the
disturbances associated with

autonomy and goal-oriented
cognitive functions

Our Solution

, & pervasive
framework for monitoring
IADL activities in a
dementia assessment
scenario

Follows an ontology-
driven approach to IoT
data modelling and
analysis

Interpretation and
assessment are
performed



Existing Approaches

OWL has been widely used for
modelling human activity semantics
[2]

In most cases, activity recognition
involves the segmentation of data
into snapshots of atomic events, fed
to the ontology reasoner for
classification

Time windows [3], slices [4] and
background knowledge about the
order or duration [5] of activities

Web cameras to monitor IADL in
home [6]

Framework to evaluate activity
performance in a smart home [7]
Motion sensors in clinics to identify
sleep disturbances [8]

Sensor network deployment in
nursing homes to monitor vital signs
of patients [9]

Dem@Lab follows a hybrid reasoning
scheme, using for activity
detection and to extract clinical
problems.

Dem@Lab extends these concepts in a
unified framework for IoT sensor
interoperability.



() Al Requisites
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() The Dem@Lab Solution
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() Knowledge Structure and Vocabularies

Assessment

Observations

Activity

and

Protocols
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() Activity Recognition

Location-driven context
generation and classification:

Predefined zones, according to
the location each activity takes

place. [10]

When a participant enters a
zone, a Context instance is
generated and associated it
with collected observations. The
resulting context instances are
fed into the ontology reasoner
to classify them in the activity

hierarchy.
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Performance for
7 IADLs and
50 participants

TP | FP | FN | Recall Precision

PreparePillBox 45 10 5 90.00 81.82
PrepareTea 38 3 12 76.00 92.68
AnswerPhone 36 4 14 72.00 90.00
TurnRadioOn 41 3 9 82.00 9318
WaterPlant 41 3 9 8200 9318
AccountBalance 40 4 10 80.00 90.91
ReadArticle 45 8 5 90.00 84091



Problem Detection

The clinical experts highlighted the Abnormal situations detected include
fact that, apart from recognizing Highly repeated

protocol activities, the derivation of Excessively long

problematic situations would further Missed (absent)

support them for the diagnosis. Incomplete

Dem@Lab has been enriched with a e
set of queries to detect and 3 {
. . . . . 4 select (count(?0) as ?n) ?x ?s ?e {
hlghllght situations Of pOSSIbly 5: ?x a :Context; :contains ?0; :starts ?s; :ends ?e.
' 7% }

8: }
9 FILTER (?n > 1)
10:}



() Clinical Interface
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() Clinical Interface

Results
Yoik . Successtul Attempts Duration Total Attempts Total Duration ® Complete and
st Phone Number o ‘ incomplete activities

the -sec

with order and
duration

Prepare Dnink v 2 31 sec

Prepare the drug box v 1 min and 25 sec
¢ Physical activity
measurements




() Deployment and Results

Deployed in the day center of the Greek Association of Alzheimer Disease
and Relative Disorders for more than 100 participants

83% mean accuracy of clinical assessment among healthy, MCI (Mild
Cognitive Impairment) and Alzheimer’s Disease (AD) [11], compared to
direct observation annotation and neuropsychological assessment scores




Alternatives and extensions

Handle missing information
since the current activity recognition models need all axioms to be satisfied

Handle uncertainty and conflicts
as the current approach assumes that all observations bear the same confidence

Deployment in more realistic, open-world environments, e.g. in homes

activity zones are not that clearly predefined and thus it is harder to compensate for sensor errors
more items interfering (noise)
different actors



Conclusion

enables complex task monitoring of individuals in a
controlled pervasive environment, currently applied in
dementia assessment. Underlying Al techniques, computer
vision, semantic modelling and fusion, over an IoT
infrastructure, provide in-depth information for the duration
order and clinical problems during a predefined -clinical
protocol, assisting in the clinical assessment of autonomy and
cognitive decline.
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