Dem@Lab: Ambient Assisted Living Framework for the Assessment of Dementia in Clinical Trials

Thanos G. Stavropoulos, Georgios Meditskos, Stelios Andreadis*, Thodoris Tsompanidis, Ioannis Kompatsiaris

Supported by the EU FP7 project Dem@Care: Dementia Ambient Care - Multi-Sensing Monitoring for Intelligent Remote Management and Decision Support (No. 288199)

- 1. Problem Area & Contribution
- 2. AI Requisites
- 3. The Dem@Lab Solution
- 4. Alternatives and Extensions
- 5. Conclusion

Problem Area & Contribution

Problem

- Key clinical feature of the Alzheimer's disease: Impairment in daily function, reflected on the difficulty to perform complex tasks, such as the **Instrumental Activities of Daily** Living (IADLs) [1] making phone calls shopping preparing food housekeeping laundry
- Current assessment methods involve questionnaires and clinical rating scales

Cannot often provide objective and fine-grained information

 Pervasive and IoT technologies promise to overcome such limitations

Using sensor networks and intelligent analysis to capture the disturbances associated with autonomy and goal-oriented cognitive functions

Our Solution

Dem@Lab, a pervasive framework for monitoring IADL activities in a dementia assessment scenario

- Follows an ontologydriven approach to IoT data modelling and analysis
- Interpretation and assessment are performed

Existing Approaches

- OWL has been widely used for modelling human activity semantics [2]
- In most cases, activity recognition involves the segmentation of data into snapshots of atomic events, fed to the ontology reasoner for classification
- Time windows [3], slices [4] and background knowledge about the order or duration [5] of activities

Dem@Lab follows a hybrid reasoning scheme, using DL reasoning for activity detection and SPARQL to extract clinical problems.

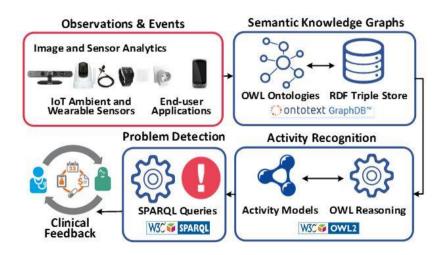
- Web cameras to monitor IADL in home [6]
- Framework to evaluate activity performance in a smart home [7]
- Motion sensors in clinics to identify sleep disturbances [8]
- Sensor network deployment in nursing homes to monitor vital signs of patients [9]

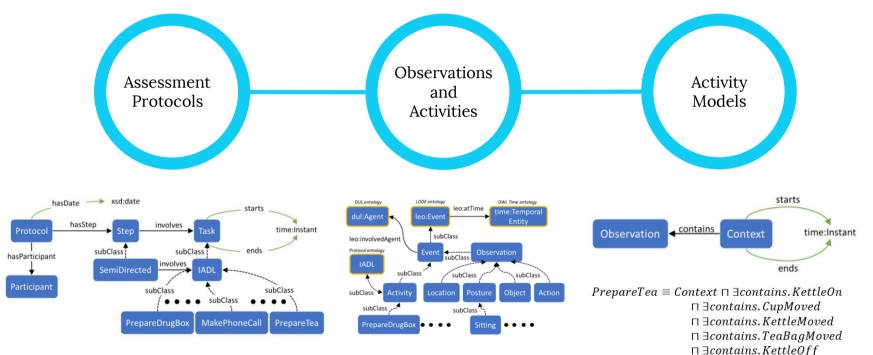
Dem@Lab extends these concepts in a unified framework for IoT sensor interoperability.

– AI Requisites

- Knowledge Representation -
 - Ontologies

- Activity Recognition
 - Computer Vision
 - Reasoning


Problem Detection
Outlier Detection
Rules
Reasoning

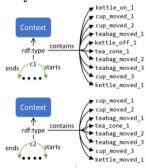

IoT infrastructure

	Device	Sensor Type	Data Type	Modality
	Kinect	Ambient	Image, Depth	Posture, Location, Event
	Camera	Ambient	Image	Posture, Location, Event
	GoPro	Wearable	Video	Objects, Location
\bigcirc	DTI-2	Wearable	Accelerometer	Moving Intensity
	Plugs	WSN	Power Usage	Objects
	Tags	WSN	Object Motion	Objects

Dem@Lab architecture

Knowledge Structure and Vocabularies

 $\Box \exists contains. TeaZone$


Activity Recognition

Location-driven context generation and classification:

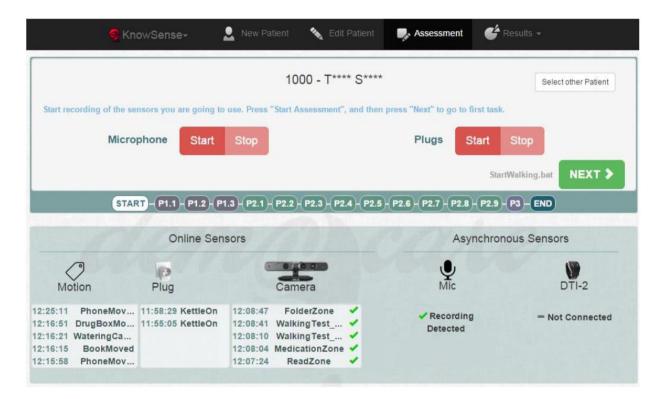
Predefined zones, according to the location each activity takes place. [10]

When a participant enters a zone, a Context instance is generated and associated it with collected observations. The resulting context instances are fed into the ontology reasoner to classify them in the activity hierarchy.

Performance for 7 IADLs and 50 participants

	ТР	FP	FN	Recall	Precision
PreparePillBox	45	10	5	90.00	81.82
PrepareTea	38	3	12	76.00	92.68
AnswerPhone	36	4	14	72.00	90.00
TurnRadioOn	41	3	9	82.00	93.18
WaterPlant	41	3	9	82.00	93.18
AccountBalance	40	4	10	80.00	90.91
ReadArticle	45	8	5	90.00	84.91

Problem Detection


- The clinical experts highlighted the fact that, apart from recognizing protocol activities, the derivation of problematic situations would further support them for the diagnosis.
- Dem@Lab has been enriched with a set of SPARQL queries to detect and highlight situations of possibly problematic behavior.

Abnormal situations detected include

- Highly repeated
- Excessively long
- Missed (absent)

```
Incomplete
۲
1: select ?x ?s ?e
2: where {
3:
     {
4:
        select (count(?o) as ?n) ?x ?s ?e {
           ?x a :Context; :contains ?o; :starts ?s; :ends ?e.
5:
           FILTER NOT EXISTS {?x a :Activity.}
6:
7:
        }
8:
     }
    FILTER (?n > 1)
9:
10:}
```

— Clinical Interface

Assessment Process

- Automated procedure
- Equipment manipulation and monitoring
- Performed by a single clinician (psychologist) while also instructing or interviewing participants
- Reaching up to 5 participants per day

– Clinical Interface

		Phase 3 - Sem	I-directed Tasks		
Task 🔺	Success 0	Successful Attempts	Successful Attempts Duration	Total Attempts	Total Duration
ial Phone Number	×	-	= sec	1	0 sec
stablish the account balance	-	-	= sec	-	= sec
repare Drink	-	1	29 sec	2	31 sec
Prepare the drug box		1	1 min and 25 sec	1	1 min and 25 sec
Disc Reduces the Manua		nin and 25 sec re the drug box	29 sec Prepare Drink	2 sec Principle (fill) Notes for	
the second se				Bragderie Ghile	
the second se				Bragderie Ghile	
Transport (Fig. 1970)		re the drug box		Bragderie Ghile	
310000007 (Bp) ////www.		re the drug box	Prepare Drink	Bragderie Ghile	
310000007 (Bp) (220000) 50		re the drug box	Prepare Drink	Bragderie Ghile	
Alternat (B) (2004)		re the drug box	Prepare Drink	Bragderie Ghile	

Results

- Complete and incomplete activities with order and duration
- Physical activity measurements

– Deployment and Results

Deployed in the day center of the **Greek Association of Alzheimer Disease and Relative Disorders** for more than 100 participants

83% mean accuracy of clinical assessment among healthy, MCI (Mild Cognitive Impairment) and Alzheimer's Disease (AD) [11], compared to direct observation annotation and neuropsychological assessment scores

• Handle missing information

since the current activity recognition models need all axioms to be satisfied

• Handle uncertainty and conflicts

as the current approach assumes that all observations bear the same confidence

 Deployment in more realistic, open-world environments, e.g. in homes activity zones are not that clearly predefined and thus it is harder to compensate for sensor errors more items interfering (noise) different actors

Dem@Lab enables complex task monitoring of individuals in a controlled pervasive environment, currently applied in dementia assessment. Underlying AI techniques, computer vision, semantic modelling and fusion, over an IoT infrastructure, provide in-depth information for the duration order and clinical problems during a predefined clinical protocol, assisting in the clinical assessment of autonomy and cognitive decline.

Sacco, G. et al.: Detection of activities of daily living impairment in Alzheimer's disease and MCI using ICT. Clin. Interv. Aging. 7, 539 (2012). 1. Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environments. Int. J. Web Inf. Syst. 5, 4, 410-430 (2009). 2. Okeyo, G. et al.: Dynamic sensor data segmentation for real-time knowledge-driven activity recognition. Pervasive Mob. Comput. 10, 155–172 (2014). 3. Riboni, D. et al.: Is ontology-based activity recognition really effective? In: Pervasive Computing and Communications Workshops. pp. 427-431 IEEE (2011). 4. Patkos, T. et al.: A reasoning framework for ambient intelligence. In: Artificial Intelligence: Theories, Models and Applications. pp. 213–222 Springer (2010). 5. Seelye, A.M. et al.: Naturalistic assessment of everyday activities and prompting technologies in MCI. J. Int. Neuropsychol. Soc. 19, 04, 442–452 (2013). 6. Dawadi, P.N. et al.: Automated assessment of cognitive health using smart home technologies. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 21, 4, 323 (2013). 7. Suzuki, R. et al.: Monitoring ADL of elderly people in a nursing home using an infrared motion-detection system. Telemed. J. E Health. 12, 2, 146–155 (2006). 8. Chang, Y.-J. et al.: Wireless sensor networks for vital signs monitoring: Application in a nursing home. Int. J. Distrib. Sens. Netw. 2012, (2012). 9. Romdhane, R. et al.: Activity recognition and uncertain knowledge in video scenes. AVSS, 2013 10th IEEE International Conference, 377-382 (2013). 10. Karakostas, A. et al.: A Sensor-Based Framework to Support Clinicians in Dementia Assessment. In: Amb. Intel. Software and Applications. pp. 213-221 (2015). 11.

